Many Task Computing for Real-Time Uncertainty
Prediction and Data Assimilation in the Ocean

Constantinos Evangelinos, Member, IEEE, Pierre F. J. Lermusiaux, Member, IEEE, Jinshan Xu,
Patrick J. Haley Jr., and Chris N. Hill

Abstract—Error Subspace Statistical Estimation (ESSE), the uncertainty prediction and data assimilation methodology employed for
real-time ocean forecasts, is based on a characterization and prediction of the largest uncertainties. This is carried out by evolving an
error subspace of variable size. We use an ensemble of stochastic model simulations, initialized based on an estimate of the dominant
initial uncertainties, to predict the error subspace of the model fields. The dominant error covariance (generated via an SVD of the
ensemble generated error covariance matrix) is used for data assimilation. The resulting ocean fields are provided as the input to
acoustic modeling, allowing for the prediction and study of the spatiotemporal variations in acoustic propagation.

The ESSE procedure is a classic case of Many Task Computing: These codes are managed based on dynamic workflows for (i) the
perturbation of the initial mean state, (ii) the subsequent ensemble of stochastic PE model runs, (iii) the continuous generation of
the covariance matrix, (iv) the successive computations of the SVD of the ensemble spread until a convergence criterion is satisfied,
and (v) the data assimilation. Its ensemble nature makes it a many task data intensive application and its dynamic workflow gives it
heterogeneity. Subsequent acoustics propagation modeling involves a very large ensemble of very short in duration acoustics runs.
We study the execution characteristics and challenges of a distributed ESSE workflow on a large dedicated cluster and the usability of

enhancing this with runs on Amazon EC2 and the Teragrid and the 1/O challenges faced.
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1 INTRODUCTION

UR initial motivation was speeding up the exe-
Ocution of our stochastic ocean data assimilation
ensembles via distributed computations and thereby al-
lowing the evaluation of larger ensembles in the same
amount of real time. Our approach resulted in a clear
case of a Many Task Computing (MTC) [1] application.

In what follows, Section 2 describes the application
area of ocean data assimilation and provides details
about the timeline of real-time data assimilation and
ocean-acoustic modeling. Section 3 describes ESSE [2],
[3], the data assimilation and error estimation approach
used. Section 4 describes the ESSE implementation as
a MTC application and the options we face in terms
of optimizing I/O issues. This is followed in Section 5
by a discussion of the practical MTC use of ESSE on
local clusters, Grids and Amazon EC2. We then illustrate
scientific results in Section 6 and discussing future work
in Section 7. Conclusions are in Section 8.

2 OCEAN DATA ASSIMILATION

Data Assimilation (DA) is a quantitative approach to
optimally combine models and observations that is con-
sistent with model and data uncertainties. Ocean DA
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can extract maximum knowledge from the sparse and
expensive measurements of highly variable ocean dy-
namics. The ultimate goal is to better understand and
predict these dynamics on multiple spatial and temporal
scales. There are many applications that involve DA or
build on its results, including: coastal, regional, seasonal,
and inter-annual ocean and climate dynamics; carbon
and biogeochemical cycles; ecosystem dynamics; ocean
engineering; observing-system design; coastal manage-
ment; fisheries; pollution control; naval operations; and
defense and security. These applications have different
requirements that lead to variations in the DA schemes
utilized.

The ocean physics involves a multitude of phenom-
ena occurring on multiple scales, from molecular and
turbulent processes to decadal variations and climate
dynamics. Life takes place in the ocean, from bacteria
and plankton cells to fish and mammals. The range of
space scales is from about 1 mm to 10,000 km, and
of time scales, from about 1 s to 100 years and more.
Features and properties in the ocean interact over these
scales but significant interactions occur predominantly
over certain ranges of scales, which are usually referred
to as scale windows. For example, the internal weather of
the sea, the so-called oceanic mesoscale, mainly consists
of phenomena occurring over a day to months and over
kilometers to hundreds of kilometers. This is one of
the most energetic scale windows in the ocean and the
present MTC study focuses on this window of processes.

A comprehensive prediction should include the relia-
bility of estimated quantities. This allows an adequate
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use of these estimates in a scientific or operational
application. In a prediction with a model integrating
either in time and in space, errors in the initial data
(initial conditions), boundary conditions and models
themselves impact accuracy. Predicted uncertainties then
contain the integrated effects of the initial error and of
the errors introduced continuously during model inte-
gration. Mathematically, uncertainty can be defined here
by the probability density function (PDF) of the error
in the estimate. Since ocean fields are four-dimensional,
uncertainty representations are here also fields, with
structures in time and space.

Realistic simulations of four-dimensional ocean fields
are carried out over broad numerical domains, e.g. O(10-
1000) km for O(10-1000) days. The number of grid points
and thus of discretized state variables are very large,
usually of O(105—107). On the other hand, ocean data are
limited in temporal and spatial coverage. Commonly, the
number of data points for an at-sea sampling campaign
is of O(10* —10°). For substantial scientific advances and
to reduce uncertainties, the sources of information, the
various data and dynamical models, are combined by
data assimilation [4]. This combination is challenging
and expensive to carry out, but optimal in the sense that
each type of information is weighted in accord with its
uncertainty.

2.1 Real Time Assimilation

An important clarification needs to be made regarding
the different times involved in ocean forecasting: the
observation time, forecaster time and simulation time
(Fig. 1). New observations are made available in batches
(Fig. 1, first row) during periods T}, from the start of
the experiment (1) up to the final time (7). During the
experiment, for each prediction k (Fig. 1, zoom in middle
row), the forecaster repeats a set of tasks (from 7§ to T]’f).
These tasks include the processing of the currently avail-
able data and model (from 7§ to 7¢), the computation of
r + 1 data-driven forecast simulations (from t to tic“),
and the study, selection and web-distribution of the best
forecasts (from tjc“ to TJ’E). Within these forecast compu-
tations, a specific forecast simulation i (Fig. 1), zoom in
bottom row) is executed during t{ to ¢} and associated
to a “simulation time”. For example, the ith simulation
starts with the assimilation and adaptive modeling based
on observations Tp, then integrates the dynamic model
with data assimilation and adaptive modeling based on
observations 71, etc., up to the last observation period
T, which corresponds to the nowcast. After T}, there
are no new data available and the simulation enters the
forecasting period proper, up to the last prediction time

Thotn.

2.2 Ocean Acoustics

As one of the major application of underwater acoustics,
sonar performance prediction requires the modeling of
the acoustic field evolution. The parameters include the
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Fig. 1. Forecasting timelines. Top row: “Observation” or
“ocean” time T during which measurements are made and
the real phenomena occur. Middle row: “Forecaster” time
7% during which the kth forecasting procedure and tasks
are started and finished. Bottom row: “ith simulation” time
t* which covers portions of the real “ocean” time for each
simulation. Multiple simulations are usually distributed on
several computers, including ensembles of forecasts for
uncertainty predictions (ESSE).

four-dimensional ocean and seabed fields. They are com-
plex to predict and can have significant uncertainties.
Methods and systems that forecasts the ocean, the seabed
and the acoustics in an integrated fashion have only
been developed and utilized recently. Our approach is
based on coupling data-assimilative environmental and
acoustic propagation models with ensemble simulations,
as developed by [5], [6].

Having an estimate of the ocean temperature and
salinity fields (along with their respective uncertainties)
provides the required background information for cal-
culating acoustic fields and their uncertainties. Sound-
propagation studies often focus on vertical sections.
ESSE ocean physics uncertainties are transferred to
acoustical uncertainties along such a section. Time is
fixed and an acoustic broadband transmission loss (TL)
field is computed for each ocean realization. A sound
source of specific frequency, location and depth is cho-
sen. The coupled physical-acoustical covariance P for
the section is computed and non-dimensionalized. Its
dominant eigenvectors (uncertainty modes) can be used
for coupled physical-acoustical assimilation of hydro-
graphic and TL data. ESSE has also been extended to
acoustic data assimilation. With enough compute power
one can compute the whole “acoustic climate” in a three-
dimensional region, providing TL for any source and
receiver locations in the region as a function of time and
frequency, by running multiple independent tasks for
different sources/frequencies/slices at different times.



3 ERROR SUBSPACE STATISTICAL ESTIMA-
TION

3.1

Using continuous-discrete Bayesian estimation [7] and
the notation of [8], the spatially discretized version of
the deterministic-stochastic ocean model and parameter
equations are combined into a single equation for the
augmented state vector x, of large but finite dimensions.
Observations are taken at discrete instants ¢, > to and
are concatenated into a data vector y{. The dynamics,
observations and DA criterion are then,

Formalism

dx=M(x,t) + dn 1
V=M (XK, tr) + € 2
min J(x, y3; di, e, Q(t), Ry) ®)

where M and H are the model and measurement model
operator, respectively, J the objective function, and dn
Wiener processes (Brownian motion), i.e. n ~ N (0, Q(t))
with

E{dnwdn® )} = Q(t)dt. Note that the deterministic
ocean dynamics and parameter equations are actually
forced by noise processes correlated in time and space.
State augmentation [7], [9], [10] is used to re-write
equations in the form of Eq. 1 which are forced by
intermediary processes dn white in time and space.
Measurement model uncertainties €;, are assumed white
Gaussian sequences, €; ~ N(0,Ry). The initial condi-
tions have a prior PDE, p(x(ty)), i.e. x(to) = Xo + n(0)
with n(0) random.

Error Subspace Statistical Estimation (ESSE, [2], [11],
[12]) intends to estimate and predict the largest un-
certainties, and combine models and data accordingly.
When the DA criterion (Eq. 3) guides the definition of the
largest uncertainties or “error subspace”, the suboptimal
truncation of errors in the full space is optimal.

ESSE proceeds to generate an ensemble of model
integrations whose initial conditions are perturbed with
randomly weighted combinations of the error modes.
A central (unperturbed) forecast is also generated. The
matrix of differences between each perturbed model
realization in the ensemble and the central forecast is
then generated and an estimate of the conditional mean
is produced. A singular value decomposition (SVD) of
the resulting normalized matrix provides us with the
dominant error modes (based on a comparison of the
singular values). A convergence criterion compares error
subspaces of different sizes. Hence the dimensions of the
ensemble and error subspace vary in time in accord with
data and dynamics. The whole procedure can be seen in
Figure 2.

The main component of the ESSE scheme that is used
here is the uncertainty prediction. An initial condition
for the dominant errors is assumed computed and avail-
able, using schemes given in [13], [14]. At ¢, Xg(+) is
pertubed (Eq. 6) using a combination of error modes
Ej(+) with random coefficients 7 (+). These coefficients
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Fig. 2. The ESSE algorithm

are weighted by IIy(+) and constrained by dynamics
[11]. The truncated tail of the error spectrum is modeled
by random white noise nJ.. For the evolution to t;41, a
central forecast (Eq. 4) and an ensemble of j = 1,...,q
stochastic ocean model integrations is run (Eq. 7), start-
ing from the perturbed states x;,(+). The forcings dnt) are
defined in [2]. The ES forecast (Eq. 9) is computed from
the ensemble. The matrix My y1(-) = [i{cﬂ(—)—ﬁkﬂ(—)]
of differences between ¢ realizations and an estimate
of the conditional mean, e.g. X{}!;(-) in Eq. 5, is then
computed. It is normalized and decomposed (Eq. 9)
into IT11(-) = %Eiﬂ(f) and Ex1(-) of rank p < ¢
by singular value decomposition (the operator SVD,(-)
selects the rank-p SVD). The ensemble size is limited by
a convergence criterion (Eq. 10). The coefficient p used
here measures the similarity between two subspaces
of different sizes ( [15], [16]). A “previous” estimate
(E, II) of rank p and "new” estimate (E, II) of rank
p > p are compared, using singular values to weight
singular vectors. The scalar limit « is chosen by the
user (1 —e < a < 1). g4(-) selects the singular value
number i and k¥ = min (p,p). When p is close to one,
(E, IT) is the error forecast for tpi1: Ilpi1(-), Exs1(-).
The dimensions of the ensemble (¢q) and ES (p) hence
vary with time, in accord with data and dynamics.

Centralfest : 4)
XL (o) | dx=M(%,t)dt ,

with Xp = Xp(+)

Ens.mean : (5)
X (=EZ] ()}
ESIn. Cond. : (6)
RL(H)=R(+) + Ep(n ) +nf,
71=1,....q .
Ens. Fest : 7)

%] 1) | dRI=M(X7,t)dt + dn
with XJ =X7 (+)
ESFest: (8)
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Acoustic predictions are generated using acoustic
propagation models and newly developed parallel soft-
ware. With this new parallel acoustic software, we com-
pute the whole “acoustic climate” in a three-dimensional
region, providing transmission loss (TL) for any source
and receiver locations in the region as a function of time
and frequency.

4 ESSE WORKFLOW

The ESSE calculations require the calculation of a very
large ensemble of ocean forecasts. This imposes sig-
nificant demands on computational power and stor-
age. ESSE ensembles, however, differ from typical high
throughput applications such as parameter scans in more
than one way:

1) there is a hard deadline associated with the exe-
cution of the ensemble, as a forecast needs to be
timely;

2) the size of the ensemble is dynamically adjusted ac-
cording to the convergence of the ESSE procedure;

3) individual ensemble members are not significant
(and their results can be ignored if unavailable) -
what is important is the statistical coverage of the
ensemble;

4) the full resulting dataset of the ensemble member
forecast is required, not just a small set of numbers;

5) individual forecasts within an ensemble, especially
in the case of interdisciplinary interactions and
nested meshes, can be parallel programs them-
selves.

Point (1) above hints towards the use of the any
Advanced Reservation capabilities available; point (2)
means that the actual compute and data requirements
for the forecast are not known beforehand and change
dynamically; point (3) suggests that failures (due to
software or hardware problems) are not catastrophic and
can be tolerated - moreover runs that have not finished
(or even started) by the forecast deadline can be safely
ignored provided they do not collectively represent a
systematic hole in the statistical coverage. Point (4)
means that relatively high data storage and network
bandwidth constraints will be placed on the underlying
infrastructure and point (5) means that the compute
requirements will not be insignificant either.

In the case of the ESSE approach to Data Assimilation,
a central process acts as a job shepherd for the ensemble,
as shown in Fig 3: A loop of N ensemble members is first
calculated, each member consisting of a perturbation of
the initial conditions/parameters and a forecast. After all
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Fig. 3. The serial ESSE implementation

members are calculated, the difference of the resulting
forecast from a central forecast is calculated in a loop,
creating a large file containing the uncertainty covari-
ance matrix. A Singular Value Decomposition (SVD)
of this matrix ensues followed by a convergence test
with the result of the previous SVD. If convergence is
not achieved, the process loops back to increase N to
Ny, up to some maximal value N,,,, or until the time
Tnas available for the forecast expires. The process then
restarts for the ensemble members N + 1 to N,. This
approach suffers from several bottlenecks:

1) The perturb/forecast loop needs to finish for the
diff loop to start (or the two loops can be fused
(merged). Either way there is no exposed paral-
lelism.

2) The diff loop has a serial bottleneck (the same file
is written to). Depending on the variant of the
perturbation type employed, it may also expect to
add the perturbations to the uncertainty covariance
matrix in the order they were generated.

3) The SVD/convergence test has to wait for the diff
loop to finish.

4) The SVD and the convergence test are large calcula-
tions requiring a lot of memory and time, especially
for large N.

4.1 Parallelized ESSE

We considered a natural transformation of the ESSE
process to address these bottlenecks and increase the
amount of exploitable parallelism, transforming the
problem into one amenable to MTC techniques - see also
Fig 4. Specifically we dealt with bottleneck 1 above by
replacing the concept of the loop with that of a pool of
ensemble calculations, of size M > N. These calcula-
tions can be done concurrently on different machines, as
there is no actual serial dependence in the forecasting
loop. They would in effect be the MTC element of the
forecasting procedure. We then decouple the diff loop by
having it run continuously, adding new elements to the
uncertainty covariance matrix, as they become available
from the forecast ensemble calculations. Furthermore, we
relax our requirement that elements of the covariance
matrix are in the order of the perturbation number
(bottleneck 2) and instead keep track of which pertur-
bation is added every time for bookkeeping purposes.



Unfortunately we cannot easily do away with the single
file bottleneck on the diff loop and that forces us to
limit the diff calculation to a single machine with access
to lots of disk space as the covariance matrix tends to
be very large (O((N G V)2) where G is the number of
3D grid points and V the number of physical fields and
biochemical/physical tracer variables).
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Fig. 4. The parallel ESSE implementation

The SVD calculation and the convergence test are also
decoupled from the diff loop by running continuously on
their own, using the latest result available from the diff
loop. To fully decouple the loops without introducing
a race condition on the covariance matrix file between
its reading for the SVD and its writing by diff, we
employ three files, a safe one for SVD to use and a
live alternating pair for diff to write to, with the safe
one being updated by the the appropriate member of
the pair. The SVD calculation and the convergence test
proceed on its own with the requirement of fast I/O
access to the safe file and a machine with large memory
and many processors for the parallel SVD calculation on
a dense matrix (for the time being we are employing
shared-memory parallel LAPACK calls though the use
of SCALAPACK for distributed memory clusters may
become necessary in the future if our ensembles get too
large).

If the convergence test succeeds, the remaining en-
semble members (queued for execution or running) are
canceled, and depending on the time constraints (for
forecast timeliness) and an associated policy, either the
ensemble calculation concludes immediately or the re-
maining ensemble results already calculated are diffed,

another SVD calculation is performed and all available
results are used. In theory one could also spare any
ensemble calculations close to finishing (according to
performance estimates for the machines they are execut-
ing on and accumulated runtime), to further minimize
the wasted cycles at the expense of further delays.

If the convergence test fails for a number of ensemble
members sufficiently close to M < Nj,qz, the ensemble
pool can be enlarged (in stages) up to Ny, (or even
slightly more) in order to ensure convergence and at the
same time make sure that there is no point during this
process where the pipeline of results drains and the SVD
calculation has to wait (aside from the startup wait).

4.2

The ESSE workflow is implemented as a shell script in
variants targeting either Sun Grid Engine (SGE) [17] or
Condor [18]. If the shell script catches the kill signal it
proceeds to cancel all pending jobs and do some cleanup.
This master script that runs on a central machine on
the home cluster launches singleton jobs that implement
the perturb/forecast ensemble calculations. The differ,
SVD and convergence check calculations proceed semi-
independently, either on the same machine as the master
script or on some other machine with access to the same
filesystem and lots of memory. They wait to ascertain
that a multiple of a set number of realizations has
finished and then they run. We allow for variants where
the perturb/forecast ensemble is split in two, first all
the perturbations are generated and then the forecasts
are run. This makes sense only in case that there are
very few machines with good network connections to
the storage hosting the large files that perturb needs to
read. In that case it makes sense to restrict the execution
of pert to those machines only and split the ensemble
workflow. Dependencies are tracked using separate (per
perturbation index) files containing the error codes of
the singleton scripts (which are set on purpose to sig-
nify success or failure). These files reside in directories
accessible directly or indirectly from all execution hosts
so that state information can be readily shared. Moreover
the perturbation index number is passed on to each
singleton either by cleverly altering the name of each
job submission to include it or by stripping it off the
task array. The latter approach is more desirable (as it
places less strain on the job scheduler) but if the ESSE
execution gets stopped , it can only be restarted without
rerunning all jobs by switching to a one-job submission
per perturbation index strategy.

Implementation specifics

5 ESSE AsS AN MTC APPLICATION IN
PRACTICE
5.1 Special ESSE needs

ESSE and other similar ensemble-based ocean forecast-
ing methodologies are used a several times a year in a
real-time setting during live ocean experiments lasting



weeks to months. In the past, any calculations that was
more involved than a simple serial forecast (possibly em-
ploying objective analysis based data assimilation which
could still be handled by a powerful on-board worksta-
tion) had to be performed back on land. Remote com-
puter clusters at participating academic/commercial or
military institutions were used, connected via slow links
to the ship-borne measurement apparatus. Advances in
computer system and networking technology have now
resulted in the availability of a ship-borne computing
infrastructure (of a rack or even deskside form factor) to
handle pretty large basic ensemble calculations. At the
same time the constant drive for higher resolution, better
(and more usually than not - more complex) models
and comprehensive error subspace representations have
resulted in considerably larger increases of the compu-
tational demands. In practice this means that for the
“real-time” requirements to be satisfied, the use of land-
based clusters is still required for the more involved
ESSE analyses.

This suggests that use of a dedicated home cluster
resource is definitely worthwhile as such a system is
under the complete control of the PIs and can be devoted
entirely to the needs of the real-time experiment. Such
systems are also necessary because a lot of other incu-
bating computations are required, either to prepare such
experiments and develop new methods and software for
it, or to carry out other independent research work.

Importantly, the local home cluster resources should
be augmented by remote machines that are not under
the direct control of the user. Such resources can be
provided in the form of batch-controlled allocations on
(in the case of the USA and depending on the sponsor-
ing agency) NSE, DoE, DoD, NOAA or NASA shared
compute resources or more generally via use of cloud
computing based virtual clusters, such as Amazon’s EC2.
Such systems can be utilized on demand, as a function
of the real-time needs over limited periods.

5.2 1/0 analysis

Beyond the compute side needs of the major components
of ESSE we have to consider the I/O stresses that they
put on our storage infrastructure. Both pert and pemodel
(as well as the other executables) employ NetCDF [19]
for reasons of portability - this however tends to make
I/O requests rather opaque as they are hidden under
the hood of the NetCDF library. We chose to use a
tool that looks at I/O performance without requiring
recompilation or other type of instrumentation of exe-
cutables: strace_analyzer [20] employs low level hooks
in the operating system to capture read, write and other
I/0 requests. In the parts that follow, KB, MB etc. refer
to powers of 10 instead of powers of 2, e.g. 1KB=1000
bytes etc.

5.2.1 I/O needs of the perturbation generators

When pert is run on the local filesystem I/O time is
about 27% of the total time. As can be seen in Table 1,

TABLE 1
pert write/read sizes

I/0 size range | # of requests | type
0-1KB 11 read
1-8KB 3 read
8-32KB 53603 read
0-1KB 1 write
1-8KB 1 write
8-32KB 544 write

there are a great many 1/0O calls of a small size.

The total number of bytes written was 4.5MB in 546
total calls. The average (mean) bytes per write call were
8,197 bytes, with a standard deviation of 649 bytes. The
median bytes per call were 2 pages (8192 bytes).

The total number of bytes read was 435.5MB, in 53,072
total calls. The average (mean) bytes per read call was
8,206 bytes, with a standard deviation of 373 bytes. The
median bytes per call were as before 2 pages.

A total of 4,363,806 bytes was read from the cen-
tral forecast file, 426,639,520 was read from the error
subspace matrix and 4,494,987 bytes were read with
4,472,832 written to the perturbed ICs.
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Fig. 5. Read/write I/O request sizes for pert as a function
of time

Looking at a breakdown in time of the I/O requests
in Figure 5 we see that there is a continuous set of reads
throughout the run in two sizes (8 & 16KB); a write
happens at the very beginning and the rest at the end.

Looking at a breakdown in throughput of the I/0
requests in Figure 6 we see that there is a wide spread of
read bandwidth as seen by the application (ie. including
filesystem cache effects) throughout the run. Similarly
for the writes at the end of the run, one sees a range of
performance values.

Overall we can state that pert is partly I/O bound (but
finishes quickly on local disk) - the main I/O involves
reading part of the error subspace matrix. The individual
I/0 calls by the NetCDF library are both numerous
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Fig. 6. Read/write 1/O throughput (in MB/s) for pert as a
function of time - filesystem cache is enabled

TABLE 2
pemodel write/read sizes
[ I/0 size range | # of requests | type |
0-1KB 3290 read
1-8KB 4227 read
8-32KB 137133 read
0-1KB 2019 write
1-8KB 148 write
8-32KB 59532 write

and small: The calls at a granularity that is smaller
than a page are insignificant but such a pattern is not
well suited for large parallel filesystems (such as PVFS2)
which are tuned for large streaming stores. Moreover
the internal structure of the NetCDF files appears to
necessitate a lot of reading and then writing of the output
file which in many cases can cause trouble with NFS.

5.2.2 /O needs of the ocean model

When pemodel is run on the local filesystem I/O time
is only about 0.24% of the total time (ie. the code, as
currently setup is not I/O limited). As can be seen in
Table 2, there are a great many I/0O calls of a small size.

The total number of bytes written was 492MB in
61,699 total calls. The average (mean) bytes per write
call were 7,976 bytes, with a standard deviation of 1,584
bytes. The median bytes per call were again 2 pages
(8,192 bytes)

The total number of bytes read was 679MB, in 82,952
total calls. The average (mean) bytes per read call was
8,187 bytes, with a standard deviation of 2,121 bytes. The
median bytes per call were as before 2 pages.

A total of 173,283,024 bytes were read from the forcing
file, 8,541,726 were read from the IC and 480,431,123
were read from, with 490,541,996 being written to the
main output file - another 468,564/721,57 bytes are read
from/written to a secondary output file, while 12.4M B

and 3.9M B are read from the pressure bias and shapiro
filter input files respectively.
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Fig. 7. Read/write I/O request sizes for pemodel as a
function of time

Looking at a breakdown in time of the I/O requests
in Figure 7 we see that there is a flurry of activity at the
very beginning and end of the run; reads continue in
two main sizes for the first 3rd of the run or so. Writes
are very small and spread throughout.
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Fig. 8. Read/write throughput (in MB/s) for pemodel as a
function of time - filesystem cache is enabled

Looking at a breakdown in throughput of the 1/0
requests in Figure 8 we see that there is a wide spread
of bandwidth as seen by the application (ie. including
filesystem cache effects) throughout the run. A range of
low to high perfromance is seen at the beginning and
the end; the small writes in the rest of the run cannot
achieve high performance.

Overall we can state that pemodel is not I/O bound
when working out of local disk - most of the I/0O



involves reading the forcing and reading/writing the
output files. As before the nature of NetCDF necessitates
a lot of rereading of the output file.

5.3 Performance implications over NFS

If we are to look at the performance of pert with
input/output files stored over NFS (Gigabit Ethernet
high performance network used by the Steele Cluster
at Purdue University) we discover that the total runtime
can increase by a very large amount - from a few seconds
to 2.5 minutes or more (274+ secs in Figure 9. In fact in
the past, over more constrained LANs (100Mbit mix of
switches and hubs) we have seen times as high as 700+
seconds, making pert very expensive.
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Fig. 9. Read/write throughput (in MB/s) for pert over NFS
as a function of time - filesystem cache is enabled

The performance drop may not show in the percentage
of time spent doing I/0, indeed that may decrease, as
the extra time appears simply as wallclock time - the
process idles as the kernel waits on NFS activity. Thus
the individual bandwidth figures in Figure 9 appear to
cover a decent range of values - it is the total wallclock
time that suffers. This is a problem even with a single
pert reading /writing over NFS - multiple ones (as would
be the case in a production ensemble) can only make
the problem worse. This suggests that use of diskless
clusters is not well suited to this application.

5.4 Local cluster description

Our local cluster is composed of 114 dual socket Opteron
250 (2.4GHz) nodes (1 with 16G RAM, 2 with 8GB and
the rest with 4GB), 3 dual socket Opteron 285 (dual core
2.6GHz) nodes, all with 4GB RAM (replacement nodes),
and a dual socket Opteron 2380 (Shanghai generation,
quad core 2.5GHz) head node with 24GB RAM. The file-
server serves over 18TB of shared disk over NFS, using
a 10Gbit/s connection to a 200Gbit/s switch backbone.
All nodes have a Gigabit Ethernet connection to switches

arranged in a star formation, feeding into the central
switch. The cluster has both SGE and Condor installed
and active (at the same time). Condor is setup to consider
nodes used by SGE as claimed by their “owner” so the
two systems can coexist (with Condor giving precedence
to SGE). All users tend to use only one of the two
systems at the time.

5.4.1 Timings

For the timings discussed below about 210 of the 240
cores were available - the rest were in use by other
users. We tested two scenarios: one that uses NFS for
the large input files and another that prestages (to every
local disk) all input files so that all input is local. We did
not test the case where both input and output files live
on the NFS server for the duration of the execution of the
singletons as it places too much stress on the NFS server
and is disruptive to other users. Therefore in all cases the
useful output files are copied back to the NFS server at
the end of their job. In all cases the differencing, SVD
and convergence check calculations were happening on
the master node.

This 1/0 optimization made more of
a difference for the perturbation part
of  the algorith where CPU utilization

jumped from ~ 20% to ~ 100%. The initial conditions
generated thus and used for the ensemble model runs
are stored on the local directory anyway and therefore
this (more expensive) part of the ESSE procedure does
not as much of a performance boost. 600 ensemble
members pass through the ESSE workflow in ~ 77mins
in the all local I/O case and in ~ 86mins in the mixed
locality case. As all nodes were equally close to the
fileserver we deed not deem it necessary to test the
ESSE variant where the perturbation calculation is done
in a separate job submission from that of the PE model.
For both SGE and Condor we used job arrays to lessen
the load on the scheduler.

Timings under Condor were between 10 —20% slower.
Essentially the difference could be seen in the time it
took for the queuing system to reassign a new job to
a node that just finished one. In the case of SGE the
transition was immediate - Condor appeared to want to
wait. We tweaked the configuration files to diminish this
difference in throughput which is probably due to the
effort put in Condor to function as a very successful cycle
harvester and the resulting care it takes not to disrupt
everyday desktop usage.

The ESSE calculation was followed by more than 6000
ocean acoustics realizations - each of which executed for
approximately 3 minutes - in this case no job arrays were
used and the system handled all 6000+ jobs without any
problem whatsoever.

5.5 ESSE on the Grid

The task at hand is to augment the ESSE ensemble
size by employing remote resources (usually but not



always Grid-enabled). That could be either a depart-
mental cluster within the same overall organization, a
partner institution Grid or the large-scale national and
international Grid infrastructures such as the Teragrid,
Open Science Grid, EGEE etc.

The disadvantage of dealing with  Grid
resources is that they come with a wide
variety = of  rather  heavyweight  middleware

(such as Globus,gLite,Unicore5/6,0MII-UK,ARC,
GRIA) that are not very easy to install and require
maintenance over time. In this manner they represent
an additional burden on both the users and the
administrators.

5.5.1 Scheduling ensembles

The easiest (while at the same time least flexible) way to
add Grid resources for the execution our ensembles was
remote submission/cancellation of jobs (using (gsi)ssh
+ the local job manager commands) either individually
or as a job array. Essentially a small part of the ESSE
master script dealing with job submission/cancellation
is replicated on the remote resource. singleton scripts
particular to the remote system in question are submitted
and no complicated logic is needed to make them work
as they are not generic. The directories that keep track of
job submissions/completions etc. on the home cluster are
either mounted on the remote system using XUFS [21],
SSHEFS [22] etc. or they are updated using passwordless
SCP connections (to avoid requiring setting up Globus or
other Grid infrastructure servers on the home cluster end.
This approach gives no easy way for the user to monitor
the progress of one’s jobs (other than to try to monitor
the contents of the submission/completion directories).
One needs to take care to assign a clearly separated block
of ensemble members to these external Grid execution
hosts to avoid overlaps.

A different path is offered by the wide availability of
the Condor software. The existing Condor implementa-
tion of ESSE needs to be slightly adjusted to allow for
use of remote clusters either via flocking, Condor-C or
Condor-Glidein. Unfortunately all of these approaches
entail modification of the configuration of the home
Condor cluster and sometimes even of the remote cluster
- something we are able to do locally but in general
a non-privileged user cannot do. Further issues (which
can be avoided with careful configuration choices) can
arise when other users’ jobs (also submitted to the
local Condor queues) end up on remote Grid resources
they cannot be executed on. The remaining alternative,
Condor-G, on the other hand is not as capable of han-
dling so many jobs as we are envisioning.

One other possibility (which circumvents these prob-
lems) is the use of Personal Condor (in which case
all local configuration files are owned by the user),
connecting via Condor-Glidein to both the local Condor
pool and the remote clusters. A related effort which we
plan to investigate further is the use of the MyCluster
[23] software that makes a collection of remote and local

TABLE 3
pert/pemodel performance (time to completion in
seconds) on a few Teragrid platforms

site processor type pert pemodel
ORNL | Pentium4 3.06MHz 67.83 | 1823.99
Purdue | Core2 2.33MHz 6.25 1107.40
local Opteron 250 2.4GHz | 6.21 1531.33

resources appear as one large Condor or SGE controlled
cluster. This way we we are not limited to Condor but
we can use our SGE-based setup instead.

5.5.2 /O issues

There are significant I/O issues that need to be ad-
dressed when considering the use of remote resources
for ESSE ensembles. As a minimum requirement the
shared input files can be read remotely from Open-
DAP servers at the home institution (using the NetCDF-
OpenDAP library) allowing the immediate opportunistic
use of a remote resource that is discovered to be idling.
The performance implications of such an approach how-
ever (hundreds of requests to a central OpenDAP server
make it a less desirable solution. Therefore one is more
likely to employ manual prestaging of the input files -
use of shared filesystems over a WAN can help speed
up such operations (e.g. one copy from home to gpfs-
wan and then a fast distribution from gpfs-wan to local
fast disks. Use of data staging engines such as Stork
are another possibility, provided they work with our
scheduler.

When it comes to the output files, one has the choice
of either a push model (from the remote execution hosts
back to the home cluster or a pull model (a pull-agent on
the home cluster fetching files from a central repository
for each of the remote clusters). The former method is
the simplest one requiring the least book-keeping - at
the same time it requires nodes that can talk to the
outside world and the batch nature of the runs results
in a very large number of concurrent remote transfer
attempts followed by no network activity whatsoever.
This can seriously slow down the gateway nodes of
the home cluster. The pull model requires more work (a
separate agent, notifications that files have been copied
so they can be safely deleted etc.) but can pace the file
transfers so that they happen more or less continuously
and perform much better. A third alternative introduces
a two-stage put strategy - with nodes storing their out-
put on a shared filesystem and an independent agent
transferring them over to the home cluster.

5.5.3 Computational issues

An idea of the speeds of Teragrid hosts running pemodel
and pert vs. the speeds seen on our local home cluster is
shown in Table 3.

As one can see speeds vary appreciably (and a recom-
pilation, however inconvenient it may be - especially for
a last minute change of code) can be well worth it. The



slow pert performance for ORNL appears to be mainly
related to the PVFS2 filesystem used - the Purdue runs
employ a local fast filesystem. In practice this means that
the more disparate the hosts used to augment the local
compute facilities, the more uneven the progress of the
various remote clusters will be and perturbation 900 may
very well finish well before number 700.

5.5.4 Evaluating ESSE on the Grid

There are many advantages to using the Grid to augment
local compute resources for ESSE:

o There are a great many computational resources
available on the Grid allowing for . Teragrid’s Con-
dor pool is claimed to be almost 27,000 cores but
at the time of the writing of this paper only about
1828 appeared to be available for use, with around
100 at a time free to run a user job.

o Many Grid-enabled systems have been designed
with massive 1/O requirements in mind, allowing
for fast access from many nodes to a shared filesys-
tem.

o Similarly large shared Grid-enabled systems usually
have excellent connectivity to the fastest Internet
backbone and allow for fast file transfers to and
from the home system.

At the same time there are significant disadvantages

to using the Grid:

1) Each remote resource is slightly to very differ-
ent in hardware, software (O/S, compilers and
libraries) and filesystem configuration. This means
that the user is faced not only with having to
rebuilt and redeploy the code binaries every time
but also with modifying variables in the singleton
execution scripts to match the particulars of the
filesystem/operating system setup at hand.

2) Due to the shared nature of resources on large
external centers one cannot be sure that there will
be enough nodes on a single resource to reach
the capacity needed. In the absence of advance
reservation the jobs submitted may very well end
up running on the following day (or in any case
outside the useful time window for ocean forecasts
to be issued). So many different Grid resources at
the same time would have to be employed (with
the resulting increase in complexity).

3) A careful estimate of the duration of the jobs can
help in case backfilling is employed on the queuing
system of the Grid resource but even in that case
commonly used limitations of active jobs (irrespec-
tive of total core count) per user can throttle back
performance expectations.

4) Moreover in many cases the queuing system sched-
uler has been tuned to prioritize large core count
parallel jobs and thereby penalize massive task
parallelism workloads. In that case one needs to
refactor singleton jobs to batches of singletons pack-
aged as a single job (with all the extra trouble this
refactoring can introduce).
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Advance reservations (which are not yet widely avail-
able if at all possible) will be necessary to ensure that
a sufficient number of cpu power will be available.
Experiments are planned ahead of time to allow for such
reservations to be made but their daily time boundaries
cannot be very tight.

Another issue with the MPP platforms available on the
Grid that offer massive numbers of processors for high
throughput/massive task parallelism type of workloads
is that their I/O configuration and support for running
scripts can be limited. Case in point are the IBM Blue
Gene/L systems (like NCAR’s Frost on the Teragrid)
which share one I/O node for a number of compute
nodes and does not offer a complete O/S environment
on the compute node to support running a script. Full
support for running shell scripts on MPP compute nodes
unfortunately may go against the general philosophy of
having them run a minimized O/S in order to better
perform when running closely coupled parallel codes.

5.6 ESSE in the Cloud

The emerging Cloud Computing infrastructure offers
us a different avenue we can pursue to augment the
ESSE ensemble size. Given our needs we are interested
in the laaS (Infrastructure as a Service) form of Cloud
Computing services. In particular we have experimented
with what is currently the most easy to use laaS system,
Amazon’s EC2.

5.6.1 Scheduling ensembles

EC2 offers a set of tools that allow the provisioning
and booting of various Linux, Solaris and Windows
Xen virtual machine images (called AMIs) and allows
the remote user to login to them as an administrator
and control them accordingly. There is also control over
which ports each live instance has open to the internal
EC2 network as well as the outside world. This level of
complete control allows us a wide variety of options on
how to use EC2 provisioned nodes for ESSE calculations:

o Creation of an independent on-demand cluster, with
its own master node and queuing system and re-
mote submission of jobs in the same way as for a
generic remote cluster/Grid environment.

« Addition of the EC2 nodes to the home cluster as
extra compute nodes. This has already been demon-
strated for GridEngine and we have been able to
replicate it. Condor also offers the ability to launch
jobs on Amazon EC2 nodes but the way that they
are provisioned (essentially as a job) and controlled
is too restrictive for our needs.

o Creation of a personal (Condor or SGE) private clus-
ter using MyCluster mixing local and EC2 resources.

o Dynamic addition of EC2 nodes to an existing clus-
ter - offered in product form by Univa (UniCloud)
and Sun (Cloud Adapter in Hedeby/SDM).

This last option automates the booting/termination of
EC2 nodes based on queuing system demand, further



TABLE 4
pert/pemodel performance (time to completion in
seconds) on various EC2 instance types - Opt stands for

Opteron

site processor type pert pemodel | cores
ml.small Opt DC 2.6GHz 13.53 | 2850.14 0.5
m1.large Opt DC 2.0GHz 9.33 1817.13 2
m1l.xlarge Opt DC 2.0GHz 9.14 1860.81 4
cl.medium | Core2 2.33GHz 9.80 1008.11 2
cl.xlarge Core2 2.33GHz 6.67 1030.42 8
m2.2xlarge | Nehalem 2.67GHz | 3.39 779.77 4
m2.4xlarge | Nehalem 2.67GHz | 3.35 790.86 8

minimizing costs. Most of the options allow for minimal
changes to the generic SGE setup.

5.6.2 I/O and computational issues

The I/0 issues of the Amazon EC2 option are similar
to the Grid ones but compounded by the fact that
neither the networking nor the disk hardware are geared
towards high performance computing. Similar solutions
can be adopted, with an emphasis on avoiding issues
resulting from the relatively low network bandwidth of
EC2 to the outside world. Any common staging areas can
be provided either via NFS exporting a persistent EBS
volume or populating an on-demand created parallel
filesystem with data from EBS. In the latter case extra
work needs to be made to ensure that the AMIs can
function as clients for the parallel filesystem. Given the
issues with NFS performance discussed in Section 5 NFS
staging areas should be abused for massive concurrent
I/0 from remote nodes, however appealing the simplic-
ity of such an approach may appear.

An idea of the times of several EC2 instances running
pemodel and pert for various instance types is shown
in Table 4. As of the last few months of 2009 the new
Amazon datacenters have introduced new varieties of
actual hardware for the various EC2 instance types -
hence the ml.small (standard) instance can be either
AMD Opteron - 2.0GHz or 2.6GHz dual core (DC) based
- or Intel (Core2) Xeon 54xx series (Penryn generation)
quad core (QC) based. The latter type of hardware can
offer even better performance that the one shown in
Table 4. Amazon recently introduced Intel Nehalem-
based instance types with increased memory capacity,
effectively allowing all of the ESSE calculations to be
conducted in the Cloud, even for very large ensemble
sizes as the nodes have enough memory to handle the
SVD of extremely large matrices.

In all the cases shown the instance type was fully
utilized (ie. 8 copies of pert/pemodel were run con-
currently on a cl.xlarge instance. The m1.small instance
appears as a 1 core but is in fact limited to a maximum of
50% (or even 40% for newer cpu types) cpu utilization,
hence appearing as a half-core. The executables (and
software environment) were identical to those on the
home cluster. In each case the worst time of the batch
is being reported. Despite the faster Nehalem generation
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processors available on the m2 series instances, the most
cost-effective approach balancing price and performance
appears to be cl.medium (or cl.xlarge if one wants to
maximize the number of execution cores for a given
number of instances).

Cost-wise for example an ESSE calculation with 1.5GB
input data, 960 ensemble members each sending back
11MB (for a total of 6.6GB) would cost: 1.5(GB) x 0.1 +
10.56(GB) x 0.17 + 2(hr) * 20 % 0.68 = $29.15 Use of
reserved or spot instances would drop pricing for the
cpu usage by a bit less than a factor of 3.

5.6.3 Evaluating ESSE on EC2

There are quite a few clear advantages to using EC2 for
larger ESSE ensembles:

 For all intents and purposes the response is imme-
diate. EC2’s capacity is large enough that a request
for a virtual EC2 cluster gets satisfied on-demand,
without having to worry about queue times and
backfill slots.

o The use of virtual machines allows for deploying the
same environment as the home cluster. This provides
for a very clean integration of the two clusters.

« Having the same software environment also results
in no need to rebuild (and in most cases having to
revalidate) executables. This means that last minute
changes (because of model build-time parameter
tuning) can be used ASAP instead of having to go
through a build-test-deploy cycle on each remote
platform.

o EC2 allows our virtual clusters to scale at will: There
is a default 20 instance limit (which correspond to a
maximum configuration of 160 cores) but if needed
it can be increased upon request.

 Since the remote machines are under our complete
control, scheduling software and policies etc. can be
tuned exactly to our needs.

At the same time use of EC2 is not without it’s problems:

 Unlike the case of shared state or national resources
that come out of research grant related allocations,
EC2 usage needs to be directly paid to Amazon.

o Amazon charges by the hour - much like cell-phone
charges usage of 1 hour 1 sec. counts as 2 hours.
Moreover Amazon charges for data movement in
and out of EC2.

o The performance of virtual machines is less than
that of “bare metal”, the difference being more
pronounced when it comes to 1/O.

o Unlike purpose-build parallel clusters, EC2 does
not offer a persistent large parallel filesystem. One
can be constructed on demand (just like the virtual
clusters) but the Gigabit Ethernet connectivity used
throughout Amazon EC2 alongside the random-
ization of instance placement mean that parallel
performance of the filesystem is not up to par.

« Moreover, unlike national and state supercomputing
facilities, Amazon’s connections to the home cluster



are bound to be slower and result in file transfer
delays.

The substandard (single port Gigabit Ethernet based)
interconnect that an EC2 virtual cluster provides should
not be so much of an issue for future ESSE ensembles
employing nested calculations: Two-way nesting would
be run on 2-core instances (or two.four of them could be
“packed” on 4/8-core instances), utilizing shared mem-
ory for fast communications between the nested models.
Even the far less commonly used three-way nesting
could run faster on oversubscribed 2-core instances than
spread over multiple nodes.

6 EXAMPLE ESSE RESULTS FOR MONTEREY
Bay

A large Office of Naval Research (ONR)-sponsored,
multi-institution coastal predictive skill exercise,the Au-
tonomous Ocean Sampling Network-II (AOSN-II), oc-
curred in August-September 2003 in the Monterey Bay
region off central California.The goal of this exercise
was to initiate at-sea research of an adaptive observing
and prediction system, with the intent to assimilate
various data types, adapt the deployment of platforms
and allow the relocation of the system to other regions.
The Harvard Ocean Prediction System(HOPS) and Er-
ror Subspace Statistical Estimation(ESSE) system were
utilized in real-time to forecast physical fields and un-
certainties, assimilate various ocean measurements(CTD,
AUVs, gliders and SSTdata), provide suggestions for
adaptive sampling, and guide dynamical investigations.

To exercise our new MTC implementation of ESSE, we
repeated the calculations of AOSN-II. The ESSE forecast
for September 5, 00:00 GMT was initialized from an error
nowcast for September 3, 00:00 GMT. The background
ocean field on September 3, 00:00 GMT is a HOPS
forecast simulation which assimilates all available and
calibrated data up to September 2, 10:00GMT.

The dominant 600 eigenvectors of the posterior error
covariance estimate for September 3, 0000GMT were
utilized to perturb the ocean fields. A white noise of
an amplitude proportional to the estimated absolute
and relative errors in the observations is added to this
random combination, in part to represent the errors
truncated by the error subspace. An ensemble of forecast
simulations, each forced by forecast COAMPS atmo-
spheric fluxes issued on September 2, was then carried
out. These ensemble members were then utilized to
compute the standard deviations shown in Figs. 10,11.

7 FUTURE WORK

We plan to fine tune our ESSE workflows for production
using the Teragrid as well as test them on the Open
Science Grid. We would like to investigate the efficacy of
a data scheduler such as Stork to help us with prestaging
input data. We also plan to test the feasibility of a mixed
local/Grid/EC2 run employing MyCluster. Future more
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involved experiments are expected to scale from 1000 to
10000 or more ESSE ensemble members (and even more
acoustic calculations). We are interested in seeing how
queuing systems and resource managers handle such
a workload in a short time interval. Furthermore more
realistic model setups are expected to require the use of
nested HOPS calculations which are executed in parallel
- thereby introducing the concept of massive ensembles
of small (2-3 task) MPI jobs. We plan to simplify the use
of such setups via the use of an XML driven validating
graphical user interface [24].

Another area where MTC would be most valuable
is the intelligent coordination of autonomous ocean
sampling networks. To achieve optimal and adaptive
sampling [25], [26], [27], [28], [29], large-dimensional
nonlinear stochastic optimizations, artificial intelligence
and advance Markovian estimation systems can be re-
quired. Such complex systems are prime examples of
MTC problems that can be combined with our uncer-
tainty estimations [30].

8 CONCLUSION

We described a new type of Many-Task Computing
application that is very relevant to Earth and Envi-
ronmental Science applications (and prototypical of a
general class of ensemble-based forecasting and esti-
mation methods). We introduced the concept of ocean
data assimilation, discussed the ESSE algorithm and
described its MTC implementation (and its variations
along with their justification). Results on a local cluster
were presented along with a discussion of the challenges
of scaling out and solutions for doing so employing
Grids and Clouds. I/O locality issues are among our
main concern. We believe that this type of ensemble
based forecast workflows can in the future represent an
important new class of MTC applications.
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